Анаэробный порог. Самые важные вопросы о беге — интервью Михаилу Иванову Что такое аэробный порог

Чем отличаются аэробные (кардио) и анаэробные (силовые) тренировки, и почему мы не может выполнять подтягивания на перекладине или отжимания на брусьях так же долго, как крутить педали велосипеда или бегать? Секрет кроется в существовании так называемого анаэробного порога, который при его достижении, начинает "отключать" наши мышцы.

Наша физическая активность на базовом уровне представляет собой окислительный процесс, происходящий в клетках мышечных тканей при участии сердечнососудистой и дыхательной систем. Как известно из школьных курсов биологии и химии, данный процесс происходит при участии кислорода, поступающего в мышцы от сердца через артерии и сеть мелких кровеносных сосудов, капилляров, с дальнейшим выделением энергии. На месте кислород замещается углекислым газом, и насыщенная им кровь уже по венам обратно через сердце поступает в легкие, а далее через органы дыхания вне нашего тела.

Перейдём к чуть более подробному рассмотрению вопроса с точки зрения биохимии. Основным и самым универсальным источником энергии для повседневной активности и в принципе любых метаболических процессов живого организма является глюкоза (C6H12O6). Однако в чистом виде ни у животных, ни у растений это соединение не находится. В нашем случае при необходимости восстановления это жизненно важное соединение образуется посредством ферментного расщепления сложного полисахарида (C6H10O6)n, гликогена. Его запасы находятся в мышечных тканях (примерно 1% от общей массы, при активной нагрузке расходуются в первую очередь) и в печени (до 5-6% от массы, примерно 100 – 120 г для взрослого человека). Стоит отметить, что только гликоген, запасённый в клетках печени, (т.н. гепатоцитах) может быть переработан в глюкозу для питания организма в целом.

Под воздействием поступаемого извне кислорода расщепленный гликоген распадается на глюкозу, которая, окисляясь (процесс называется гликолизом), высвобождает необходимую для обменных процессов энергию. Гликолиз после своей первой стадии, когда одна молекула глюкозы расщепляется на две молекулы пировиноградной кислоты или пирувата, может протекать по двум различным сценариям:

Аэробному (при участии кислорода)

1. Количество кислорода, единовременно поступающего к мышцам, достаточно для протекания окислительных реакций и полного расщепления углеводов;

2. Потребление углеводных запасов и метаболизм в целом носят плавный, размеренный характер;

3. Молекулы пирувата используются, в основном, для выработки энергии в митохондриях (энергетических клетках) и, в конечном итоге, они расщепляются до простейших молекул воды и углекислого газа;

4. Образующийся в мышечных тканях побочный продукт в виде лактата (в литературе также встречается термин «молочная кислота», хотя химически лактат - это соль этой самой молочной кислоты, и образуется она практически сразу из-за нестабильности первого соединения) успевает выводиться без накопления за счёт активности аэробных ферментов в митохондриях.

Анаэробному (без кислорода)

1. Количество кислорода, единовременно поступающего к мышцам, недостаточно для плавного протекания окислительных реакций (хотя современные исследования учёных позволяют заявить, что анаэробный процесс работает и при достаточном получении мышцами кислорода, чаще всего это связано с неспособностью сердечнососудистой системы по разным причинам быстро выводить лактат);

2. Характеризуется резким уровнем потребления углеводных запасов и неполным расщеплением сложных углеводов;

3. Темпы гликолиза превышают темпы использования пирувата митохондриями, посредством быстрого химического распада у животных он расщепляется с образованием лактата (у растений же, кстати, при этом, образуется другое, всем известное соединение, этанол);

4. Лактат начинает накапливаться и не успевает выводиться из мышечных тканей кровеносной системой. Однако его накопление, вопреки распространенному убеждению, не является первопричиной мышечной усталости. Прежде всего, накопление лактата – это защитная реакция нашего организма на падение концентрации глюкозы в крови.
- снижение рН, связанное с накоплением лактата, лишает ферментов активности и, как следствие, ограничивает аэробную и анаэробную выработку энергии.

При увеличении нагрузки во время длительной физической активности первый механизм расщепления гликогена рано или поздно переходит во второй. Всё определяется соотношением между скоростью выработки лактата, его диффузией в кровь и поглощением мышцами, сердцем, печенью и почками. Лактат образуется даже в состоянии покоя (попадая из мышц в систему кровообращения, он в итоге либо перерабатывается в глюкозу в печени, либо используется как топливо), но пока темпы его выработки равны потреблению, никаких функциональных ограничений не появляется. Таким образом, существует некая граница или порог, при котором скорость накопления этого самого лактата начинает превышать скорость его выведения.

С точки зрения биохимии анаэробный порог (АнП, в некоторых источниках «лактатный») – это величина (единицы измерения: мл/кг/мин), показывающая, какое количество кислорода может потреблять человек (на единицу своей массы) без накопления молочной кислоты.
С точки зрения тренировочной активности, АнП – это интенсивность (проще всего за основу взять частоту сердечных сокращений, ЧСС) упражнения, при котором нейтрализация лактата не поспевает за его выработкой.

Как правило, ЧСС АнП примерно равно 85 – 90% от максимальной ЧСС. Последнюю величину можно измерить, либо сделав серию коротких спринтерских рывков на 60 – 100 м с последующим замером при помощи пульсометра величины ЧСС и подсчёта среднего значения. Либо посредством выполнения «на скорость» и максимально возможное количество повторений двух-трёх серий силовых упражнений со своим весом, таких как, например: подтягивания, отжимания на брусьях, плиометрические отжимания от пола, бурпи, приседания и пр. Главное – резкость движения, скорость и максимальная работа «до отказа». Замеры по пульсометру проводятся после каждой серии, в конце также высчитывается среднее значение, которое затем и берётся за основу. Очевидно, что полученный результат строго индивидуален и в определенном приближении его можно считать ориентиром своего реального значения АнП. Наиболее точно же замеры значения порога проводятся либо при помощи специальных портативных лактометров, либо с использованием сложного лабораторного оборудования по заранее разработанным и утвержденным методикам. Тем не менее существуют условные рекомендуемые пульсовые зоны, соответствующие тому или иному характеру тренировки в зависимости от возраста человека.

Тренировка сердечнососудистой системы и выносливости – это всегда занятия при ЧСС, немного меньшем значения АнП. В свою очередь наиболее эффективные с точки зрения жиросжигания, то есть активизации липидного обмена – это тренировки на низком (50-60% от максимума) пульсе.

Можно ли каким-то образом увеличить значение АнП?

Конечно! Более того, анаэробный порог можно повышать на протяжении всей своей жизни (в отличие от, например, уровня максимального потребления кислорода, который рано или поздно выйдет на плато, ограничение, вызванное генетическими факторами, в частности, уровнем гемоглобина в крови). Исследования показывают, что повышение АнП происходит двумя путями: как за счёт снижения уровня производства лактата, так и, наоборот, за счёт увеличения скорости его выведения.
Если представить, что кислород – это то же топливо, как, например, бензин, а наше сердце – не что иное, как двигатель внутреннего сгорания, то по аналогии с конструкцией разных производителей – один отдельно взятый человек будет потреблять тот же кислород более экономично, чем другой. Однако, как и двигателю, всей сердечной респираторной системе посредством специализированных тренировок можно сделать своеобразный «чип-тюнинг».

Здесь работает всем известный принцип. Хочешь улучшить какое-то качество в себе? Дай ему стимул для роста. Соответственно, чтобы увеличить свой АнП, необходимо регулярно проводить тренировки на уровне ЧСС, чуть выше его значения (условно, 95% от максимальной ЧСС). Например, если твой текущий АнП находится на ЧСС 165 уд/мин, то одну, максимум две тренировки в неделю надо проводить при пульсе 170 уд/мин.

Таким образом, существует четыре основных адаптационных изменения, приводящих к увеличению анаэробного порога.

1. Увеличение количества и размера митохондрий (они являются факторами аэробного производства энергии в мышечных клетках). Итог: больше энергии аэробным путём.

2. Повышение плотности капилляров. Итог: на одну клетку приходится больше капилляров, повышается эффективность доставки питательных веществ и удаления побочных продуктов

3. Увеличение активности аэробных ферментов (являются ускорителями химических реакций в митохондриях). Итог: больше энергии за более короткий промежуток времени

4. Повышение миоглобина (по аналогии с гемоглобином в крови переносит кислород в мышечных тканях от мембраны к митохондриям). Итог: повышение концентрации миоглобина, а значит – увеличение количества кислорода, доставляемого к митохондриям для выработки энергии.

Как определить ЧСС пульса порога анаэробного обмена ПАНО самостоятельно в течение 20 минут? Так же этот термин известен под названиями «анаэробный порог» или «лактатный порог». По-английски он звучит как «Threshold Heart Rate» и его просят ввести в некоторые программы отслеживания физической активности в качестве исходного значения для расчетов.

Я еще весной купил электронную книгу Джо Фрила «Библия Триатлета » на сайте издательства «Манн Иванов и Фербер». 350 электронных рублей оказались для меня наилучшим вложением капитала, и книгу я читал запоем полторы недели. После прочтения я сказал «О! Круто!» и забыл 95% информации 🙂 Сейчас начал ее пролистывать еще раз, и нашел много нового. Настало время переосмысления летних тренировок и контрольных тестов, одним из которых является расчет ПАНО для кардионагрузок.

Определение анаэробного порога

ПАНО — это сокращение от «порога анаэробного обмена». Звучит это непривычно, но на самом деле все очень просто. Организм при физических нагрузках может работать по большому счету в двух режимах (если не считать спринтерский, где вся работа происходит за счет АТФ).

Первый режим — это когда мышцам хватает кислорода для того, чтобы выдавать необходимую мощность. И все продукты распада успевают вывестись из организма. В таком режиме организм может работать довольно длительное время, пока ему хватает энергии, запасенной до начала тренировки.

Второй режим — когда нагрузка на мышцы становится чересчур сильной, и мышцам во-первых перестает хватать кислорода (легкие не успевают в нужном количестве его доставить из воздуха), и во-вторых, молочная кислота перестает успевать выводиться из мышц. В этом случае молочная кислота начинает накапливаться в мышцах, и наступает так называемое «закисление организма». В анаэробном режиме организм может работать всего от нескольких секунд до нескольких минут.

Чем обусловлен порог анаэробного обмена? — объяснить можно на простом примере. Допустим, у нас есть емкость с небольшим отверстием, из которого выливается вода. Пока мы сверху будем доливать воду медленнее, чем она выливается, емкость наполняться не будет. Но как только мы начнем добавлять воду быстрее, чем она уходит, емкость сначала наполнится, а потом и переполнится.

Точно такая же ситуация происходит в организме — уровень анаэробного порога показывает при каком ЧСС ПАНО молочная кислота начнет накапливаться в мышцах, и какой пульс ПАНО нужно поддерживать, чтобы не допустить этого явления.

Как определить анаэробный порог ПАНО самостоятельно

Я не думаю, что каждый из занимающихся бегом или велосипедом может позволить себе определение ПАНО в лаборатории. Во-первых это довольно не дешевое удовольствие, во-вторых не в каждом городе можно найти спортивную лабораторию, в которой проводятся такие тесты.

Вообще нет какого-либо «стандартного» значения анаэробного порога ПАНО, выраженного в частоте пульса. Для каждого он будет индивидуальным, и ЧСС ПАНО у лиц разного возраста будет тоже разным. Чем старше я становлюсь, тем ниже будет ЧСС ПАНО, потому что сердечная мышца «устает» с возрастом, особенно, если вести сидячий образ жизни за компом/телеком/пивасом/сигаретами. Не используйте формулу 220 минус возраст, для определения максимального пульса — результат по-факту будет неверным.

Чтобы определить лактатный порог, можно провести очень простой тест. Его результаты в абсолютном большинстве случаев практически полностью совпадают с лабораторным определением ПАНО. Предварительно, его можно определить «навскидку» при помощи Калькулятора зон частоты пульса для тренировок .

Тест лактатного порога (порога закисления) длится 30 минут. В течение этого времени нужно пробежать или проехать на велосипеде индивидуальную гонку. Одному, без соперников. Все 30 минут нужно бежать так, как будто вы на гонке. Но не перестарайтесь — после окончания этого времени вам не нужно сыграть в ящик, из-за того, что ваша частота пульса была близка к предынфарктной 🙂

Первые 10 минут мы бежим, чтобы разогнать сердце, и разогнать мышцы. Просто бежим, ничего не замеряем и не записываем. После этого включаем запись на вашем пульсомере-смарт часах и записываем частоту пульса в последних 20 минутах гонки. Затем смотрим на среднюю частоту сердечных сокращений этих 20 минут — и видим именно то, что искали: ЧСС анаэробного порога.

Именно так можно определить ПАНО в беге как с Гармин, так и с другими фитнес-трекерами. Помните, что нагрузка все 30 минут должна быть максимально полной . Но не чересчур сильной в самом начале — иначе у вас попросту не хватит энергии на этот тест.

Тест анаэробного порога

Статистика проведения теста анаэробного порога

Как это делал я. Рекомендую сразу записывать все условия и тонкости, при которых проходил тест. Чтобы в дальнейшем при определении точки ПАНО повторить его в максимально приближенных условиях. Перед тем, как выбегать или выезжать на тест — отдохните, как минимум, сутки . Я отдыхал два дня — с этой точки зрения, тест получился «чистым».

Хронология теста на лактат

  • 8:00 Не нужно есть за 2 часа до начала теста . Сегодня я проснулся в 8, съел четверь-батона, чтобы к началу теста была энергия и… лег еще поспать, так как до 4-х утра планировал, как буду определять анаэробный порог 🙂
  • 10:30 Взвесьтесь, замерьте ЧСС в состоянии покоя. Проснулся я в 10:30, взвесился (вес 83, рост 187,5), ЧСС покоя 60, в ушах немного свистит. Пока умылся, разогнался, съел витамины прошло 20 минут.
  • 10:50 Подготовьте оборудование, запишите параметры . Таким образом, без десяти одиннадцать я добрался до велосипеда (сегодня я замерял порог анаэробного обмена ПАНО именно для него, так как для бега и для велика он разный). Поставил обычное заднее колесо вместо тренировочного , накачал до 8,5 атмосфер. Датчик каденса-скорости Garmin GSC 10 опять заглючил и наотрез отказался цепляться к Fenix 3. Попытался поменять батарейку — не помогло. Плюнул, решил ехать так — не увижу только каденс. Набрал подсоленной воды в гидропак, подготовил тренировочную форму. Сегодня было плюс 13 и слегка капало, поэтому одел осеннюю, а поверх желтую ветровку от дождя. Потому как некоторе время назад я понял, что такое «Эффективная температура», после того, как проехал 60км в трусах при +5 градусах .
  • 11:30 Сделайте полноценную разминку . Наконец-то я добрался до разминки. Почему-то четверть-батона в животе куда-то подевалась, он предательски урчал, и я пожалел, что не поел еще раз сразу же, как проснулся. Моя обычная разминка состоит из «5 тибетских жемчужин» с добавлением растяжки задних мышц туловища, отжиманий и косых тренировок пресса. Затем я делаю пару специальных упражнений для разминки,

и заканчиваю все 5-ю упражнениями для разогрева мышц ног. Времени это занимает около 15-20 минут суммарно, напрягаться я по этому поводу перестал месяца как три. Теперь я воспринимаю разминку и заминку просто как часть тренировки, чтобы определить порог анаэробного обмена. Себе дешевле ее сделать, чем потом 3 недели восстанавливать потянутую мышцу или связку.

Анаэробный порог: выезжаем на замер

Красная беговая дорожка на моем стадионе

  • 12:04 Выберите ровную и спокойную трассу длиной 5-12 километров . К 12 часам я наконец-то сделал все разминки и экипировался. С тоской взглянул на кухню (мог бы и поесть в 10:30), и выкатился в сторону стадиона. Погода стояла пасмурная, недавно закончился дождь, и дорога была влажная. На трассу вылезать совершенно не хотелось, так как там хватает «лишнего адреналина» от проезжающих мимо машин. В результате пульс легко подскакивает до 165 после какого-нибудь горе-водятела с глазами на заднице и куриным мозгом. А лактатный порог будет определен неверно. В то время, как беговые дорожки на стадионе вымощены крупной резиновой крошкой — сопротивление качению довольно приличное. Поэтому велик «вязнет», и приходится прилагать больше усилия, чем на асфальте.
  • 12:12 Первые 10 минут едем в соревновательном темпе. Через 7 минут я добрался до стадиона, набрал темп и засек 10 первых минут перед расчетом на лактатный порог. Ветер был западный 15 км/ч, и каждые пол-круга я упирался в лежак, чтобы ехать против ветра в сложенном состоянии. Так как ехал я в ветровке, мне было не холодно и я слегка вспотел. Попытался снять ветровку — проехал круг, понял, что в мокром холодно — одел ветровку обратно.

Замер зоны частоты пульса лактатного порога

100% времени я ехал в анаэробной зоне

  • 12:23 Включаем запись с пульсомера и едем еще 20 минут . Я «с разгона» завершил запись одного трека на Гармине, и включил запись следующего. Чтобы рассчитать анаэробный порог. И начал усиленно продавливать-подтягивать педали. В результате, на третьей минуте я вспомнил,что «не переусердствуй вначале, иначе не доедешь» . Седьмая минута: я в первый раз подумал «да нафиг мне это надо» . На 10 минуте слегка сбавил темп, так как энергия начала кончаться (это видно на графике). 12-я минута: переключил передачу на 1 звездочку вверх. И на 17 минуте начал обратный отсчет до завершения. Постоянно, на каждый круг езды против ветра пульс подскакивал до 156-157. Но при езде «по ветру» я немного отдыхал и пульс уменьшался до 152-153. Скорость потихоньку падала. Таким образом, в начале я ехал 28 км/ч, а в конце уже 26 км/ч. На 20 минуте я с облегчением нажал кнопку СТОП — тест на порог анаэробного обмена завершен! И под конец проехал еще один круг, чтобы плавно снизить темп. В конце-концов схватил гидропак с водой, чтобы залить жажду.

График зависимости частоты пульса от скорости при лактатном тесте на 20 минут. Каждый пик ЧСС - это езда против ветра. Каждый спад ЧСС - микро-отдых на пол-круга.

  • 12:49 Заминка и восстановление . Выпив около полулитра воды я забрался на велик и поехал домой. Тест на лактатный порог успешно пройден. Пацаны на стадионе сверлили мне спину завистливыми взглядами, проклюнулось солнце. Сразу по приезду я выпил белковый коктейль с кучей L-карнитинов и других L-белков. Затем, заел все это дело двумястами граммами торта, чтобы не грохнуться в голодный обморок. Пока ел — мышцы остыли, и я начал делать заминку.

Результаты определения порога анаэробного обмена

В результате я выяснил для себя, как определить ПАНО в спорте, что для бега, что для велосипеда. Мой лактатный порог на данный момент составляет 154 удара в минуту.

В следующей записи я расскажу как использовать порог анаэробного обмена ПАНО для калькулятора расчета зон частоты пульса для тренировок .

Алекс «На Байке» Сидоров

Блюдо дня: На видео двое прикольных парней с GCN (смотрите их неудачные попытки в конце 🙂) показывают, как делать 5 простых упражнений для заминки после тренировок.

Каким образом можно измерить уровень физической формы? Наука считает, что форму определяют четыре основных компонента – аэробная способность, порог анаэробного обмена, аэробный порог и экономичность. Ведущие гонщики обладают отличными показателями по каждой из этих четырех физиологических характеристик.

Аэробная способность

Аэробная способность зависит от объема кислорода, который организм в состоянии переработать, находясь в состоянии физической активности. Максимальный объем потребления кислорода (МПК) организмом при максимальном напряжении может быть измерен в лабораторных условиях в ходе ступенчатых тестов, при которых спортсмен, на тело которого надевается специальный прибор для замера объема потребляемого кислорода, каждые несколько минут повышает интенсивность выполняемых упражнений вплоть до возникновения состояния переутомления. МПК определяется как количество миллилитров кислорода, потребляемое в минуту на килограмм веса человека (мл/кг/мин). Мужчины-гонщики мирового класса имеют показатель на уровне от 70 до 80 мл/кг/мин. Для сравнения: юноша студенческого возраста имеет в среднем показатель на уровне от 40 до 50 мл/кг/мин. У женщин показатель МПК в среднем на 10 % ниже, чем у мужчин.

Аэробная способность человека во многом определяется наследственностью. В качестве ее ограничителей выступают физиологические факторы: размер сердца, частота сердечных сокращений (ЧСС), объем крови, перекачиваемой сердцем за один такт, уровень гемоглобина в крови, концентрация аэробных ферментов, митохондриальная плотность и тип мышечных волокон. Аэробную способность можно улучшить с помощью тренировок. Обычно хорошо тренированному спортсмену требуется от 6 до 8 недель занятий с высокой интенсивностью, чтобы значительно поднять величину своего пикового значения МПК.

С годами аэробная способность обычно снижается – с 25-летнего возраста у людей, ведущих сидячий образ жизни, она снижается примерно на 1 % в год. У действующих спортсменов, в особенности у тех, кто регулярно включает в свои тренировки упражнения с высокой интенсивностью, снижение будет значительно ниже, кроме того, этот процесс начнется на пять и более лет позже, чем у нетренированных людей.

Порог анаэробного обмена (ПАНО)

Аэробная способность не может служить исчерпывающим показателем, на основании которого можно было бы, протестировав всех участников предстоящей гонки, заранее предсказать ее победителя. Спортсмены с максимальным значением МПК не обязательно окажутся в числе ее призеров. Однако высокий показатель МПК, который атлет способен поддерживать в течение продолжительного периода времени, может выступить в качестве хорошего аргумента в пользу его гоночных способностей. Стабильно высокая величина МПК говорит о высоком уровне порога анаэробного обмена (ПАНО) у спортсмена.

ПАНО, иногда называемый лактатным порогом, – важнейший показатель интенсивности для велосипедистов, в особенности участвующих в коротких и быстрых гонках, когда именно способность долго и упорно двигаться на уровне максимального значения ПАНО или чуть выше него определяет, кто первым пересечет финишную черту. ПАНО определяет такой уровень интенсивности упражнений, выше которого лактат и связанные с ним ионы водорода начинают в быстром темпе накапливаться в крови. ПАНО характеризуется повышением уровня молочной кислоты в крови и мышцах, его достаточно легко измерить в лабораторных или клинических условиях.

Организм, находясь на уровне ПАНО, в быстром темпе переключается с жиров и кислорода, используемых в качестве источников энергообеспечения, на гликоген – основной запасной углевод. Чем больший процент от МПК составляет ПАНО, тем с большей скоростью спортсмен может ехать в ходе продолжительного события, например гонки. Дело в том? что как только объем накопленной в организме молочной кислоты достигает достаточно высокого уровня, спортсмену не останется ничего, кроме как остановиться и подождать, пока не нормализуется его кислотный баланс.

У лиц, ведущих сидячий образ жизни, показатель ПАНО составляет от 40 до 50 % от МПК. У тренированных спортсменов ПАНО обычно возникает при 80–90 % от МПК. Поэтому очевидно, что если два гонщика обладают одной и той же аэробной способностью, но показатель ПАНО у гонщика A составляет 90 % от МПК, а у гонщика B – 80 %, то гонщик A способен поддерживать более высокий средний темп. Кроме того, он обладает определенными физиологическими преимуществами, связанными с выносливостью. Показатель ПАНО можно улучшить за счет тренировок. Большинство тренировок, описанных в данной книге, как раз направлены на повышение показателя ПАНО.

Аэробный порог

Аэробный порог, как правило, возникает при несколько меньшей интенсивности, чем ПАНО, однако его уровень не менее важен для достижения успеха в гонке. Езда на уровне аэробного порога напрямую связана с интенсивностью, с которой движется пелетон. Наличие великолепной аэробной физической подготовки позволяет легко ехать в пелетоне на протяжении нескольких часов (если это, конечно, необходимо) и при этом чувствовать себя свежим и готовым, когда это потребуется, предпринять сверхусилия.

Показатель аэробного порога невозможно определить в лабораторных условиях. С физиологической точки зрения он сопровождается легким повышением глубины дыхания, сопровождаемым усилиями с умеренной интенсивностью. С точки зрения ЧСС этот показатель возникает в зоне 2 (тренировочные зоны ЧСС будут описаны в следующей главе – пока же важно помнить, что показатели зоны 2 – это показатели достаточно низкого уровня). У спортсменов, находящихся в отличной форме, показатель мощности при такой ЧСС будет достаточно высоким. Величина аэробного порога будет также варьироваться в зависимости от того, насколько хорошо вы отдыхаете. Так же, как в случае с ПАНО, показатель мощности будет гораздо выше, когда вы находитесь в отдохнувшем состоянии, чем когда вы чувствуете себя уставшим.

Интенсивность на уровне ПАНО высока настолько, что усталость может не позволить вам достичь крайне высоких значений ЧСС. Этого не происходит в случае аэробного порога в силу более низкой интенсивности. Благодаря высокой мотивации вы можете заставить себя преодолевать усталость в ходе упражнений, проводимых на уровне аэробного порога. Поэтому, когда дело касается аэробного порога, вы должны обращать на ваши усилия столь же пристальное внимание, как и на значения ЧСС или мощности.

Тренировка в зоне аэробного порога является идеальным решением для случаев, когда вы собираетесь поработать над повышением своей аэробной выносливости – основной темой занятий в ходе Базового тренировочного периода. По этой причине значительная часть еженедельных упражнений в ходе Базового периода посвящена именно тренировкам на уровне аэробного порога.

Экономичность

В сравнении с гонщиками-любителями представители велосипедной элиты используют значительно меньше кислорода для поддержания заданного стабильного субмаксимального темпа, тратя меньше энергии при той же самой мощности. Эта ситуация в чем-то напоминает рейтинг экономичности автомобилей с точки зрения потребляемого топлива, который позволяет понять, какие машины попросту «сжирают» содержимое бензобаков. Использование меньшего количества «топлива» при одинаковой мощности педалирования представляет собой вполне очевидное преимущество с точки зрения соревнований.

Ряд исследований позволяет утверждать, что экономичность спортсмена улучшается в случае, если он:

Обладает большей долей медленно сокращающихся мышечных волокон (во многом это определяется наследственностью);

Обладает небольшим весом (точнее, оптимальной пропорцией вес/рост);

Не склонен к психологическим стрессам;

Использует легкое и правильное с точки зрения аэродинамики снаряжение, подогнанное под свои параметры;

Принимает такую позу при высокой скорости движения, при которой передняя часть тела минимально подвержена влиянию встречного ветра;

Избегает бесполезных и затратных с точки зрения энергии движений.

Усталость оказывает негативное влияние на экономичность, так как при работе с напряжением начинают использоваться мышцы, для которых такая работа не является привычным делом. Это одна из причин, по которым вы должны как следует отдохнуть перед важной гонкой. Ближе к концу соревнования, когда из-за накопившейся усталости степень экономичности начинает уменьшаться, вы можете заметить, как ухудшаются ваши навыки педалирования и техника езды. Чем дольше длится гонка, тем более важной становится экономия с точки зрения ее результата.

Так же, как и в случае с ПАНО, вы можете повысить вашу экономичность за счет тренировок. Она улучшается по мере повышения общей выносливости и развития технических навыков. Вот почему я обращаю особое внимание на отработку навыков педалирования в зимние месяцы и постоянно говорю о приверженности улучшению навыков педалирования и езды в течение всего года.

Порой можно подумать, что знание, учет и возможности измерения приведенных выше четырех физиологических характеристик позволяют легко измерить общую степень физической подготовки. К счастью для спортсменов, все обстоит не так. Ведущие мировые ученые могут собрать в самой современной лаборатории успешных спортсменов, провести массу тестов, измерений, анализов, выдвинуть кучу гипотез, затем предсказать, какими будут их результаты в очередной гонке и… ошибиться. Лабораторные условия – это совсем не то, что реальный мир гонок, в котором важны другие переменные, часто ускользающие от взгляда ученых.

Спортсменам на выносливость необходимо тренировать спсобность своего организма поддерживать высокий уровень интенсивности и скорости на протяжении всей дистанции соревнований, чтобы проходить ее настолько жестко и настолько быстро, насколько это возможно. На короткой гонке мы способны поддерживать более высокий темп, чем на длиной - почему? Многое в ответе на этот вопрос связано с анаэробным порогом (или АнП). Организм человека может поддерживать скорость выше Анп не более часа, после чего кумулятивный эффект высокого уровня лактата начинает ухудшать работоспособ ность. Чем короче гонка, тем больше лактата может быть накоплено в организме.
Таким образом, для поддержания высокой скорости в соревнованиях на выносливость, особенно тех, что длятся более часа, важно иметь высокий АнП. Для того, чтобы повысить АнП, необходимо тренироваться по ЧСС на уровне или чуть ниже АнП. ПАНО - порог анаэробного обмена;

Тест .

Задача: Оценить величину анаэробного порога и использовать данный уровень интенсивности, а также субьективное восприятие нагрузки и темп, соответствующие уровню, в тренировках.
Необходимое оборудование:

Монитор сердечного ритма, журнал для записи данных – пройденой дистанции, времени, средней ЧСС во время нагрузки, субьективные ощущения во время нагрузки (по шкале от 1 до 10, где 10 – максимальное усилие).
Выполнение:

Выберите место и метод тестирования.
Бег – 5-10 км
Велосипед – 25-40 км
Перед началом теста разомнитесь в течение 15 минут с умеренной интенсивностью.
Пройдите дистанцию с максимальной скоростью, которую можете поддерживать без потери темпа (это самая трудновыполнимая задача в тесте). Если чствуете, что замедляетесь, значит; вы начали в темпе, который превышает ваш АнП.

Прекратите тест и повторите его на следующей неделе, начав в более низком темпе.

Засеките время прохождения дистанции.

После 5-ти мин работы ЧСС должна стабилизироваться. ЧСС, которой вы достигнете через 5 мин и которую сможете поддержать в течение всей оставшейся дистанции будет являться ЧСС на уровне АнП.
Сделайте 15-ти минутную разминку после теста.
Большинство тренировок в «четвертой зоне» лучше проводить на пульсе на 5-10 ударов ниже АнП. Преждевременные высокоинтенсивные тренировки, вероятнее всего, приведут к раннему пику формы, либо вовсе его не достижению.

Еще один метод по определению максимального пульса.

Перед тестом сделайте разминку продолжительностью не менее 20 минут и хорошо растянитесь. От вас требуется хорошая скорость и мотивация при выполнении нагрузки. Используйте пульсометр, который обеспечит точность и легкость измерения ЧСС. При использовании монитора вы сможете в ходе теста определить свой анаэробный порог, если зафиксируете ЧСС в тот момент, когда почувствуте явную нехватку кислорода.

Не выполняйте нижеприведеные тесты, если вам больше 35 лет, если вы не проходлии медицинское обследование с нагрузочным тестом или если вы находитесь в плохой форме.

Бег: беговой тест заключается в пробегании 1,6 км дистанции по равнинной трассе илиатлетической дорожке с максимально возможной скоростью. Последнюю четверть дистанции неободимо пробежать изо всех сил. Засеките время бега. На него вы сможете потом ориентироваться процессе дальнейшей подготовки. На финише остановитесь, и сразу же подсчитайте пульс. Это будет ваша ЧСС max.
Велосипед: Велотест включает педалирование на велотренажере или велоргометре (лучше использовать свой велосипед) с максимально взможной скоростью в течение 5 минут. Последние 30 с теста необходимо педалировать изо всех сил, затем остановиться и немедленно подсчитать пульс. Полученное значение будет являться вашей ЧСС max.

Узнав ЧСС max и ЧCC в покое можно приступить к расчету уровней интенсивности (тренировочных зон).


Метод, который Р. Слимейкера и Р. Браунинга.

Для начала надо найти Резерв ЧСС по формуле: ЧСС max – ЧСС в покое. А затем полученное число умножаем:
1 уровень – 0,60-0,70
2 уровень – 0,71-0,75
3 уровень – 0,76-0,80
4 уровень – 0,81-0,90
5 уровень – 0,91-1,00

*******

ЛДГ или лактатдегидрогеназа, лактат – фермент , участвующий в процессе окисления глюкозы и образовании молочной кислоты. Лактат (соль молочной кислоты) образуется в клетках в процессе дыхания. ЛДГ содержится почти во всех органах и тканях человека, особенно много его в мышцах.
При полноценном снабжении кислородом лактат в крови не накапливается, а разрушается до нейтральных продуктов и выводится. В условиях гипоксии (недостатка кислорода) накапливается, вызывает чувство мышечной усталости, нарушает процесс тканевого дыхания. Анализ биохимии крови на ЛДГ проводят для диагностики заболеваний миокарда (сердечной мышцы), печени, опухолевых заболеваний.


При выполнении ступенчатого теста имеет место явление, которое принято называть аэробным порогом (АэП). Появление АэП свидетельствует о рекрутировании всех ОМВ (окислительные мышечные волокна). По величине внешнего сопротивления можно судить о силе ММВ, которую они могут проявить при ресинтезе АТФ и КрФ за счет окисли-тельного фосфорилирования.

Дальнейшее увеличение мощности требует рекрутирования более высокопороговых двигательных единиц (МВ), это усиливает процессы анаэробного гликолиза, больше выходит лактата и ионов Н в кровь. При попадании лактата в ОМВ он превращается обратно в пируват с помощью фермента лактатдегидрогиназа по сердечному типу (ЛДГ Н). Однако мощность митохондриальной системы ОМВ имеет предел. Поэтому сначала наступает предельное динамическое равновесие между образованием лактата и его потреблением в ОМВ и ПМВ, а затем равновесие нарушается, и некомпенсируемые метаболиты - лактат, Н, СО2 - вызывают резкую интенсификацию физиологических функций. Дыхание один из наиболее чувствительных процессов, реагирует очень активно. Кровь при прохождении легких в зависимости от фаз дыхательного цикла должна иметь разное парциальное напряжение СО2. «Порция» артериальной крови с повышенным содержанием СО2 достигает хеморецепторов и непосредственно модулярных хемочувствительных структур ЦНС, что и вызывает интенсификацию дыхания. В итоге СО2 начинает вымываться из крови так, что в результате средняя концентрация углекислого газа в крови начинает снижаться. При достижении мощности, соответствующей АнП, скорость выхода лактата из работающих гликолитических МВ сравнивается со скоростью его окисления в ОМВ. В этот момент субстратом окисления в ОМВ становятся только углеводы (лактат ингибирует окисление жиров), часть из них составляет гликоген ОМВ, другую часть - лактат, образовавшийся в гликолитических МВ. Использование углеводов в качестве субстратов окисления обеспечивает максимальную скорость образования энергии (АТФ) в митохондриях ОМВ. Следовательно, потребление кислорода или (и) мощность на анаэробном пороге (АнП) характеризует максимальный окислительный потенциал (мощность) ОМВ.


Дальнейший рост внешней мощности делает необходимым вовлечение все более высокопороговых ДЕ, иннервирующих гликолитические МВ. Динамическое равновесие нарушается, продукция Н, лактата начинает превышать скорость их устранения. Это сопровождается дальнейшим увеличением легочной вентиляции, ЧСС и потребления кислорода. После АнП потребление кислорода в основном связано с работой дыхательных мышц и миокарда. При достижении предельных величин легочной вентиляции и ЧСС или при локальном утомлении мышц потребление кислорода стабилизируется, а затем начинает уменьшаться. В этот момент фиксируют МПК.

Изменение потребления кислорода (VO2) и увеличение концентрации лактата в крови при постепенном увеличении скорости бега.


На графике изменения лактата (La) можно найти момент начала рекрутирования гликолитических мышечных волокон. Он получил название - аэробный порог (AeT). Затем, при достижении концентрации лактата 4 мМ/л или при обнаружении резкого ускорения накопления лактата находят анаэробный порог (AnT) или момент предельного динамического равновесия между продукцией лактата частью гликолитических мышечных волокон и потреблением его в окислительных мышечных волокнах, сердце и дыхательных мышцах. В этот же момент интенсифицируется дыхание и выделение углекислого газа. Концентрация норадреналина (NAd) изменяется с ростом напряженности выполнения физического упражнения, с ростом психического напряжения. Ve - легочная вентиляция (л/мин), HR - частота сердечных сокращений (ЧСС, уд/мин), MaeC - максимальное потребление кислорода.

Таким образом, МПК есть сумма величин потребления кислорода окислительными МВ тестируемых мышц, дыхательными мышцами и миокардом.

Энергообеспечение мышечной активности в упражнениях длительностью более 60 секунд в основном идет за счет запасов гликогена в мышце и в печени. Однако продолжительность выполнения упражнений с мощностью от 90 % максимальной аэробной мощности (МАМ) до мощности АнП не связана с исчерпанием запасов гликогена. Только в случае выполнения упражнения с мощностью АнП отказ от поддержания заданной мощности возникает в связи с исчерпанием в мышце запасов гликогена.

Таким образом, для оценки запасов в мышцах гликогена необходимо определить мощность АнП и выполнять такое упражнение до предела. По длительности поддержания мощности АнП можно судить о запасах гликогена в мышцах.

Увеличение мощности АнП, иначе говоря, рост митохондриальной массы ММВ, приводит к адаптационным процессам увеличению количества капилляров и их плотности (последнее вызывает увеличение транзитного времени крови). Это дает основание к предположению, что увеличение мощности АнП одновременно говорит о росте как массы ОМВ, так и степени капилляризации ОМВ.

Прямые показатели функционального состояния спортсменов

Функциональное состояние спортсмена определяется морфологической и (или) функциональной адаптацией систем организма для выполнения основного соревновательного упражнения. Самые заметные изменения происходят в таких системах организма, как сердечнососудистая, дыхательная, мышечная (опорно-двигательный аппарат), эндокринная, иммунная.

Производительность мышечной системы зависит от следующих параметров. Мышечная композиция по типу мышечного сокращения (процент быстрых и медленных мышечных волокон), которая определяется активностью фермента АТФ-аза. Процент этих волокон генетически детерминирован, т.е. в процессе тренировки не меняется. К изменяемым показателям относятся количество митохондрий и миофибрилл в окислительных, промежуточных и гликолитических мышечных волокнах, различающихся между собой плотностью митохондрий около миофибрилл и активностью ферментов митохондрий сукцинатдегидргеназы и лактатдегидргеназы по мышечному и сердечному типу; структурные параметры эндоплазматической сети; количество лизосом, количество субстратов окисления в мышцах: гликогена, жирных кислот в скелетных мышцах, гликогена в печени.

Доставка кислорода к мышцам и выведение продуктов обмена определяется минутным объемом крови и количеством гемоглобина в крови, который определяет способность переносить кислород определенным объемом крови. Минутный объем крови рассчитывается как произведение текущего ударного объема сердца на текущую частоту сердечных сокращений. Максимальная ЧСС по литературным данным и нашим исследованиям, лимитирована определенным количеством ударов в минуту, порядка 190-200, после чего общая производительность сердечно-сосудистой системы резко снижается (уменьшается минутный объем крови) из-за возникновения такого эффекта как дефект диастолы, при котором происходит резкое снижение ударного объема крови. Из этого следует, что изменение максимального ударного объема крови в прямой пропорциональности изменяет минутный объем крови. Ударный объем крови связан с размерами сердца и степенью дилятации левого желудочка и является производной двух составляющих - генетической и процесса адаптации к тренировкам. Увеличение ударного объема, как правило, наблюдается у спортсменов, специализирующихся в видах спорта, связанных с проявлением выносливости.

Производительность дыхательной системы определяется жизненной емкостью легких и плотностью капиляризации внутренней поверхности легких.

В процессе спортивной тренировки эндокринные железы претерпевают изменения, связанные, как правило, с увеличением их массы и синтеза большего количества гормонов, необходимых для адаптации к физическим нагрузкам (при правильной тренировке и системе восстановления). В следствие воздействия с помощью специальных физических упражнений на железы эндокринной системы и повышения синтеза гормонов, происходит воздействие на иммунную систему, тем самым улучшая иммунитет спортсмена.

  • Янсен П. ЧСС, лактат и тренировки на выносливость. Пер. с англ.- Мурманск: Издательство «Тулома», 2006.- 160 с.
  • Отчет по теме № 732а «Разработка информационных технологий описания биологических процессов у спортсменов»
  • A. Seireg, A. Arvikar. The prediction of muscular load sharing and joint forces in the lower extremities during walking. // J. of Biomech., 1975. - 8. - P. 89 - 105.
  • P. N. Sperryn, L. Restan. Podiatry and Sports Physician - An Evaluation of Orthoses // British Journal of Sports Medicine. - 1983. - Vol. 17. - No. 4. - P. 129 - 134.
  • A. J. Van den Bogert, A. J. Van Soest. Optimisation of power production in cycling using direct dynamics simulations. // IV int. Sym. Biom., 1993.


Метаболическая система снабжает мышцы топливом в виде углеводов, жиров и белков. В мышцах источники топлива превращаются в более полезную с точки зрения энергии форму, именуемую аденозинтрифосфат (АТФ). Этот процесс может происходить как в аэробной, так и в анаэробной форме.

Аэробное производство энергии возникает при легком и ненапряженном катании. Основным источником энергии здесь служат жиры. В процессе принимает участие кислород, необходимый для преобразования топлива в АТФ. Чем медленнее вы ездите, тем больше жиров расходует организм и больше углеводов накапливается в мышцах. По мере ускорения темпа организм постепенно отказывается от жиров и переходит к углеводам как основному источнику энергии. При напряженных усилиях организму начинает требоваться больше кислорода, чем он получает при обычном катании, вследствие чего АТФ начинает производиться в анаэробной форме (то есть буквально «без участия кислорода»).

Анаэробные упражнения связаны с углеводами как основным источником топлива. По мере превращения углеводов в АТФ в мускулы попадает и побочный продукт, называемый молочной кислотой. Это приводит к возникновению наверняка знакомого вам по напряженным упражнениям ощущения жжения и тяжести в конечностях. По мере того как молочная кислота просачивается из мышечных клеток в кровоток, от нее отделяется молекула водорода, вследствие чего кислота преобразуется в лактат. Лактат накапливается в крови, и его уровень можно измерить с помощью пробы из пальца или мочки уха. Молочная кислота производится организмом всегда.

Порог анаэробного обмена - это показатель представляет собой уровень напряжения, при котором обмен веществ, или метаболизм, переходит из аэробной формы в анаэробную. Вследствии этого лактат начинает производиться так быстро, что организм оказывается не в состоянии эффективно от него избавиться. Если я (автор ДЖО ФРИЛ - «Библия велосипедиста» ) буду медленно наливать воду в картонный стакан с отверстием в дне, она будет выливаться так же быстро, как я ее наливаю. Именно это происходит с лактатом в нашем организме при низком уровне напряжения. Если же я буду наливать воду быстрее, то она начнет накапливаться в стакане, невзирая на то, что какая-то ее часть будет, как и прежде, выливаться. Именно этот момент и является аналогией ПАНО , возникающего при более высоком уровне напряжения. ПАНО - крайне важный показатель.

Спортсмены целесообразно научиться тому, как можно грубо оценить уровень своего ПАНО в полевых условиях. Для этого ему следует контролировать свой уровень напряжения и отслеживать момент возникновения жжения в ногах.

Ступенчатый тест на велосипедном тренажере

Тест

  • Провести разминку 5-10 минут
  • В течение всего теста вы должны поддерживать заранее заданный уровень мощности или скорости. Начните с уровня 24 км в час или 100 ватт и повышайте каждую минуту скорость на 1,5 км в час или мощность на 20 ватт до тех пор, пока вам хватает сил. Оставайтесь в седле на протяжении всего теста. Переключать передачи можете в любое время.
  • По окончании каждой минуты сообщайте ассистенту (или запоминайте сами, или диктуйте на диктофон) показатель вашего напряжения, определяя его с помощью шкалы Борга (предварительно разместив ее в удобном месте).
  • По истечении каждой минуты записывается уровень выходной мощности, показатель напряжения и величину ЧСС. После чего повышается мощность на новый уровень.
  • Ассистент (или вы сами) внимательно наблюдает за вашим дыханием и отмечает момент, в который оно становится стесненным. Этот момент обозначается аббревиатурой VT (вентиляторный порог).
  • Продолжайте упражнение до тех, пока вы можете выдерживать заданный уровень мощности на протяжении хотя бы 15 секунд.
  • Полученные по итогам теста данные будут выглядеть примерно так.

Шкала воспринимаемого напряжения

6 - 7 = Чрезвычайно легкое
8 - 9 = Очень легкое
10 - 11 = Сравнительно легкое
12 - 13 = Отчасти тяжелое
14 - 15 = Тяжелое
16 - 17 = Очень тяжелое
18 - 20 = Чрезвычайно тяжелое

Тестирование критической мощности

Проведите пять индивидуальных гонок на время, желательно в течение нескольких дней.
- 12 секунд
- 1 минута
- 6 минут
- 12 минут
- 30 минут

В ходе каждого теста вы должны прилагать максимум усилий на всем протяжении. Не исключено, что для определения правильного темпа потребуется предпринять две или три попытки на протяжении нескольких дней или даже недель.

Расчеты для большей продолжительности – в 60, 90 и 180 минут – могу быть произведены с помощью графика путем продления вправо прямой, проведенной через точки КМ12 и КМ30, и отметки на ней нужных точек.

Вы можете также оценить значения для этих дополнительных данных с помощью простых математических вычислений. Для расчета мощности 60-минутного интервала отнимите 5% от величины мощности для 30-минутного интервала. Для примерного расчета мощности 90-минутного интервала отнимите 2,5% от показателя мощности для 60-минутного интервала. Если же вы отнимите 5% от показателя мощности для 90-минутного интервала, то получите мощность для 180-минутного интервала.

Примерная схема прилагается (у каждого свои показатели)

Материал взят из книги Джо Фрила «Библия велосипедиста»

  • 6. Понятие о дизадаптации, утрате адаптации и реадаптации, «цене» адаптации.
  • 7. Основные функциональные эффекты адаптации (экономизация, мобилизация, повышение резервных возможностей, ускорение процессов восстановления, устойчивость и надежность функций).
  • 8. Показатели тренированности в условиях покоя, при тестирующих (стандартных) и предельных (соревновательных) нагрузках.
  • 9. Понятие о срочном, отставленном и кумулятивном тренировочном эффекте.
  • 10. Функциональные резервы организма и их классификация. Мобилизация функциональных резервов.
  • 11. Позы и статические усилия. Феномен Лингарда.
  • 12. Классификация спортивных движений и упражнений по физиологическим критериям.
  • 13. Физиологическая характеристика спортивных упражнений аэробной мощности.
  • 14. Физиологическая характеристика спортивных упражнений анаэробной мощности.
  • 15. Характеристика циклических упражнений различной относительной мощности: максимальной, субмаксимальной, большой и умеренной.
  • 17. Общая характеристика стереотипных ациклических движений.
  • 18. Характеристика силовых и скоростно-силовых упражнений. Взрывные усилия.
  • 19. Прицельные упражнения, их влияние на различные системы организма.
  • 20. Характеристика движений, оцениваемых в баллах, их влияние на кислородный запрос, потребление и кислородный долг, работу вегетативных систем, развитие сенсорных систем и скелетных мышц.
  • 21. Характеристика ситуационных движений и видов спорта (спортивные игры, единоборства и кроссы).
  • 22. Ведущие физические качества, определяющие работоспособность в Вашем виде спорта. Физиологические методы их оценки.
  • 23. Гипертрофия мышц, виды гипертрофии. Влияние различных видов рабочей гипертрофии мышц на развитие силы и выносливости мышц.
  • 24. Механизмы внутримышечной и межмышечной координации в регуляции мышечного напряжения. Влияние симпатических нервов на проявление мышечной силы.
  • 25. Максимальная сила мышц. Максимальная произвольная сила. Физиологические механизмы регуляции мышечного напряжения. Силовой дефицит.
  • 26. Физиологические особенности тренировки силы мышц динамическими и статическими упражнениями.
  • 27. Физиологические механизмы развития скорости (быстроты) движений. Элементарные формы проявления быстроты (одиночных движений, двигательной реакции, смены циклов движений).
  • 28. Физиологические факторы, определяющие развитие скоростно-силовых качеств. Особенности проявления скоростно-силовых качеств в Вашем виде спорта.
  • 29. Скоростно-силовые упражнения. Центральные и периферические факторы, определяющие скоростно-силовые характеристики движений.
  • 31. Генетические и тренируемые факторы выносливости.
  • 32. Изменение чсс при динамической и статической мышечной работе. Контроль интенсивности аэробных нагрузок по чсс. Частота сердечных сокращений как критерий тяжести мышечной работы.
  • 33. Максимальная анаэробная мощность и максимальная анаэробная емкость – основа анаэробной выносливости.
  • 35. Порог анаэробного обмена (пано) и использование его в тренировочном процессе. Понятие об аэробной емкости и эффективности.
  • 36. Композиция мышц и аэробная выносливость. Кровоснабжение скелетных мышц при различных режимах сокращения и его связь с работоспособностью.
  • 38. Понятие о гибкости. Факторы, лимитирующие гибкость. Активная и пассивная гибкость. Влияние разминки, утомления, температуры окружающей среды на гибкость.
  • 40. Двигательные умения и навыки. Физиологические механизмы формирования двигательных навыков. Значение сенсорных и оперантных временных связей.
  • 41. Значение для формирования двигательных навыков ранее выработанных координаций (безусловных рефлексов и приобретенных навыков).
  • 42. Стабильность и вариативность компонентов двигательных навыков. Значение двигательного динамического стереотипа и экстраполяции в формировании двигательного навыка.
  • 43. Стадии формирования двигательных навыков (генерализации возбуждения, концентрации возбуждения, стабилизации и автоматизации навыка).
  • 44. Автоматизация движений, ее зависимость от размеров перемещаемой массы тела, утомления, возбудимости зон коры.
  • 45. Вегетативные компоненты двигательного навыка, их устойчивость.
  • 46. Программирование двигательного акта. Факторы, предшествующие программированию движений (афферентный синтез, принятие решения).
  • 47. Обратные связи и дополнительная информация и их роль в формировании и совершенствовании двигательного навыка. Речевая регуляция движений.
  • 48. Двигательная память, ее значение для формирования двигательного навыка.
  • 49. Устойчивость двигательных навыков. Факторы, нарушающие устойчивость навыков. Утрата компонентов навыка при прекращении систематических тренировок.
  • 51. Разминка, ее виды и влияние на системы организма. Влияние разминки на работоспособность. Длительность разминки. Особенности разминки в Вашем виде спорта.
  • 52. Врабатывание, его длительность при выполнении упражнений различного характера. Физиологические закономерности и механизмы врабатывания.
  • 53. «Мертвая точка» и «второе дыхание». Основные изменения в организме при этих состояниях.
  • 55. Утомление при мышечной работе. Особенности утомления в упражнениях различной мощности и при различных видах физических упражнений.
  • 56. Теории утомления. Центральные и периферические механизмы утомления. Особенности проявления утомления в Вашем виде спорта.
  • 57. Компенсированное (скрытое) и некомпенсированное (явное) утомление. Хроническое утомление, переутомление и перетренированность.
  • 58. Восстановительные процессы при выполнении и после мышечной работы и их общая характеристика. Фазы восстановления.
  • 60. Кислородный запрос в упражнениях различной мощности. Кислородный долг и его фракции.
  • 61. Средства, ускоряющие восстановительные процессы. Активный отдых, его значение для повышения работоспособности и эффективность после различных видов мышечной работы.
  • 62. Возрастная периодизация развития физиологических функций в онтогенезе.
  • 63. Возрастные особенности развития двигательных качеств и формирования двигательных навыков.
  • 70. Развитие двигательных качеств у женщин.
  • 71. Влияние тренировки на повышение функциональных возможностей женского организма.
  • 72. Физиологические особенности спортивной тренировки женщин.
  • 73. Влияние различных фаз омц на спортивную работоспособность женщин.
  • 74. Физиологические особенности мышечной деятельности в условиях повышенной температуры окружающей среды. Водно-солевой режим спортсмена.
  • 75. Рабочая гипертермия у спортсменов. Влияние повышенной температуры тела на работоспособность при выполнении физических упражнений различной предельной длительности.
  • 76. Гипоксия в условиях среднегорья и ее влияние на аэробную и анаэробную работоспособность.
  • 77. Физиологические основы повышения аэробной выносливости при тренировке в условиях средне- и высокогорья.
  • 78. Физиологические особенности мышечной деятельности в условиях пониженной температуры среды (на примере зимних видов спорта).
  • 79. Гипокинезия и ее влияние на функциональное состояние организма детей и взрослых. Физиологическое обоснование использования физических нагрузок в оздоровительных целях.
  • 80. Влияние физических упражнений на сердечно-сосудистую и дыхательную системы и мышечной аппарат людей зрелого возраста при занятиях физической культурой.
  • 81. Физическое здоровье человека и его критерии. Физиологические основы нормирования общей физической работоспособности лиц разного пола и возраста.
  • Снижение концентрации лактата в крови способствует повышение очень важного показателя –

    порога анаэробного обмена (ПАНО), величины нагрузки, при которой концентрация молочной кислоты в крови превышает 4 мМ/л. ПАНО является показателем аэробных возможностей организма и имеет прямую связь со спортивными результатами в видах спорта на выносливость. У тренированных спортсменов ПАНО достигается лишь при потреблении кислорода более 80% от МПК, а у нетренированных лиц – уже при 45-60% от МПК. Высокие аэробные возможности (МПК) у высококвалифицированных спортсменов определяются высокой производительностью сердца, т.е. МОК, что достигается за счет увеличения главным образом систолического объема крови, а ЧСС у них при максимальной нагрузке даже ниже, чем у нетренированных лиц.

    Увеличение систолического объема является следствием двух основных изменений в сердце:

    1) увеличение объема полостей сердца (дилятация);

    2) повышение сократительной способности миокарда.

    Одной из постоянных перестроек в деятельности сердца при развитии выносливости является

    брадикардия покоя (до 40-50 уд/мин и ниже), а также рабочая брадикардия, обусловленные

    снижением симпатических влияний и относительным преобладанием парасимпатических.

    36. Композиция мышц и аэробная выносливость. Кровоснабжение скелетных мышц при различных режимах сокращения и его связь с работоспособностью.

    Выносливость в значительной мере зависит от мышечного аппарата, в частности от композиции мышц, т.е. соотношения быстрых и медленных мышечных волокон. В скелетных мышцах выдающихся спортсменов, специализирующихся в видах спорта на выносливость, доля медленных волокон достигает 80% всех мышечных волокон тренируемой мышцы, т.е. в 1,5-2 раза больше, чем у нетренированных лиц. Многочисленные исследования показывают, что преобладание медленных волокон генетически предопределено, и соотношение быстрых и медленных мышечных волокон под влиянием тренировок практически не изменяется, но часть быстрых гликолитических волокон при этом может превратиться в быстрые окислительные.

    Один из эффектов тренировки на выносливость – увеличение толщины мышечных волокон, т.е. их рабочая гипертрофия по саркоплазматическому типу, которая сопровождается увеличением числа и размеров митохондрий внутри мышечных волокон, числа капилляров в расчете на одно мышечное волокно и на площадь поперечного сечения мышцы.

    В мышцах при тренировке выносливости происходят значительные биохимические изменения:

    1) увеличение активности ферментов окислительного метаболизма;

    2) увеличение содержания миоглобина;

    3) повышение содержания гликогена и липидов (до 50% по сравнению с нетренированными мышцами);

    4) повышение способности мышц окислять углеводы и особенно жиры.

    Тренированный организм относительно больше энергии

    при продолжительной работе получает за счет окисления жиров. Это способствует экономному использованию мышечного гликогена, снижает лактат в мышцах.

    37. Ловкость как проявление координационных способностей нервной системы. Показатели ловкости. Значение сенсорных систем, основной и дополнительной информации о движениях на проявление ловкости. Способность к расслаблению мышц, ее влияние на координацию движений.

    Ловкость – это способность к выполнению сложных по координации движений, проявление высоких координационных способностей нервной системы, т.е. сложного взаимодействия процессов возбуждения и торможения в двигательных нервных центрах.

    К ловкости относят также способность создавать новые двигательные акты и двигательные навыки, быстро переключаться с одного движения на другое при изменении ситуации.

    Критериями ловкости являются координационная сложность, точность движений и быстрота его выполнения.

    Программа (пространно-временная структура возбуждения мышц) сложно координированных движений, а также основная информация, поступающая через различные сенсорные системы, оставляют определенные следы в нервной системе, что при неоднократном их выполнении способствует запоминанию и программы, и полученных ощущений, т.е. формированию моторной памяти.

    Достаточно хорошо в памяти сохраняются последовательность и временные параметры различных фаз простых по структуре движений, но движения, имеющие сложную структуру, т.е. требующие ловкости, менее стойки. Поэтому даже спортсмены высокой квалификации при повторных выполнениях сложных по координации движений не каждый раз показывают свои лучшие результаты.

    Чрезмерно частое и длительное выполнение сложнокоординированных движений может привести к развитию перетренированности из-за перенапряжения подвижности нервных процессов. В то же время развитие координационных способностей способствует экономизации функций. Благодаря тонкой координации сокращения мышц снижается расход энергии на работу, нет чрезмерного возбуждение двигательных центров, четко взаимодействуют процессы возбуждения и торможения.

    Следовательно, развитие ловкости повышает работоспособность и отдаляет мышечное утомление.