Зрение у рыб цветное. Какое максимальное расстояние видят рыбы. Органы зрения. Зрение рыб

Видят ли рыбы в воде? Согласитесь, что вопрос довольно странный, и ответ на него может быть только утвердительным. Иное дело, как? Различают ли они цвета, могут ли воспринимать надводный мир, как их зрение зависит от прозрачности воды и т д?

Начнем с того, что острота зрения рыб целиком зависит от прозрачности воды. Пресноводные рыбы видят плохо. Вода в прудах всегда мутная, и позволяет им различать предметы, находящиеся на удалении не более двух- трех метров. По этой причине пресноводные рыбы охотятся и питаются в основном ночью. В прозрачной воде рыба видит гораздо дальше, на расстояние до 10 метров. Вот только очертания предметов у нее не четкие, что обусловлено особым строением глаза.

Глаза у рыб напоминают фотоаппарат, в котором хрусталик исполняет роль объектива, а сетчатка – матрицы, на которой и формируется изображение. Изменять свою форму хрусталик не может, поэтому далекие предметы рыба видим расплывчато. Чтобы как — то сфокусировать изображение, она подобно объективу фотоаппарата, может приближать, или отодвигать хрусталик от сетчатки, делая изображение более или менее четким. Несмотря на это, хорошо различать предметы она способна на расстоянии не более полутора метров. Сектор обзора достаточно широк, и составляет 150-170 градусов.

Человек, как мы знаем, в воде видит очень плохо, что обусловлено совершенно иным преломлением солнечных лучей. Точно также и рыба. Она способна воспринимать надводный мир только в искаженном виде. Правда предметы, находящиеся в зените, она видит хорошо. Чтобы понять, как видит рыба надводный мир, достаточно погрузить под небольшим углом в воду зеркало, и изучить появившееся в нем отражение. Впрочем, некоторые виды рыб слепы вне воды, в то время как тот же илистый прыгун, прекрасно видит, будучи на суше.

Ученые исследовали зрение некоторых видов рыб и пришли к выводу, что оно зависит от их условий существования, способов охоты, характера окружающей среды. Самое острое зрение у хищных рыб. К их числу можно отнести: судака, форель, окуня, щуку. Отличное зрение и у рыб, которые ведут донный образ жизни. Как мы понимаем, острота зрения тут напрямую привязана к методу добывания пищи. К тому же, большинство хищников ведут ночной образ жизни, и для них крайне важно различать предметы в полной темноте. С этой целью тот же лещ использует светочувствительный секрет, который выделяется его глазной сетчаткой. У сома несколько иной прибор ночного видения, который представлен нервными, светочувствительными волокнами.

Морские глубоководные рыбы пользуются светящимися органами. К их числу, например, можно отнести того же фотоблефарона. Он подсвечивает окружающее пространство особыми «фонариками», расположенными в районе глаз. Внутри их находятся бактерии, которые и излучают свет. При желании, рыба может увеличивать или уменьшать интенсивность свечения.

Глаза у рыб могут располагаться по –разному. Все зависит от образа их жизни. У донных рыб, таких как камбала, они расположены сверху. У других их представителей — по обе стороны головы. У мальков той же камбалы глаза расположены так же, как и у обычных рыб. Да и тело у них не плоское. Все дело в том, что живут они в толще воды и питаются планктоном. Но, вместе с изменением образа жизни и переходом на донное существование, меняется форма их тела и расположение глаз. Несмотря на это, зрение у камбалы не становится хуже. Ее глаза могут двигаться независимо друг от друга, что значительно расширяет их сектор обзора.

У рыбы молот глаза расположены по обе стороны выроста, что обусловлено особенностями ее охоты. Охотится она на скатов, которые обладают грозным оружием, в виде шипов на хвосте. При ином расположении глаз рыба молот наверняка бы стала их жертвой.

Парные глаза, служащие органом зрения, обычно шаровидной формой и помещаются в глазных впадинах черепа, или орбитах. Снаружи каждый глаз защищен слоем хряща или плотной соединительной ткани, которые образуют толстую наружную оболочку глаза-склеру, или склеротик у (tunica fibrosa oculi; рис., II ). На передней открытой стороне склера заменена тонкой прозрачной оболочкой - роговицей (cornea) (рис., 10). На продольном разрезе глаза можно ясно видеть, что выпуклость роговицы иная, чем у склеры, вследствие чего роговица образует как бы полусферу, заметно выступающую вперед на профиле очертаний склеры. Изнутри склеротику, или склеру, выстилает сосудистая оболочка (tunica vasculosa), образованная соединительной тканью, обильно снабженной кровеносными сосудами.

К внешней стороне сосудистой оболочки иногда прилегает блестящая прослойка-зеркальце (tapetum lucidum), которое обусловливает собой свечение глаза в темноте. Обычно tapeturn lucidum слагается из нескольких клеточных слоев, между которыми залегают небольшие кристаллики, способные отражать световые лучи на лежащую кнутри от сооудистой оболочки сетчатку, или ретину. Такую структуру имеет tapetum lucidum у хищных млекопитающих (например, у кошек, собак), а также у китов и тюленей.

На месте соединения склеры и роговицы расположена кольцевая перепонка- радужина (iris; рис., 9). Соединительнотканный передний слой радужины может содержать пигмент, обусловливающий окраску темных глаз. Если пигмент в переднем слое совершенно отсутствует, но залегает в заднж слоях радужины, получается светлая окраска глаз (например, голубых).

Рис. Глаз щуки в вертикальном продольном разрезе.

1-сетчатка; 2-пигментный эпителий; 3 -сосудистая оболочка; 4- зрительный нерв; 5 - хрусталик; 4-его связка; 7-мышца, оттягиваюшяя хрусталик; 8-ее сухожилие; 9-радужина; 10 -роговица; 11-склеротика; 12-хориоидальная железа. Пунктиром показано положение хрусталика в аккомодированном глазу.

Наконец, если пигмента в радужине не содержится, просвечивающие кровеносные сосуды сообщают глазу красную расцветку, характерную для альбиносов. Радужина ограничивает внутреннее отверстие-зрачок, который может расширяться и сужаться благодаря наличию в слое радужины радиальных и кольцевых мускульных волокон. Непосредственно позади радужины образуется складчатый кольцевой валик-ресничное тело (corpus ciliare), состоящее из мускульных волокон. Это образование у наземных позвоночных имеет большое значение в процессе аккомодации или приспособления глаза к различному зрению (далекому и близкому).

Ресничное тело формируется из передних частей сосудистой оболочки. Кроме того, часть ретины, прилегающая к ресничному телу, образует зону мельчайших зубчиков (оrа serrata). Так, например, у человека имеется 50 подобных зубчиков. По краю ресничного тела прикрепляется с помощью соединительнотканных тяжей (zonula ciliaris zinnii) тонкая, также соединительнотканная сумка хрусталика. Прозрачный хрусталик (lens cristallina), состоящий из слоя тончайших концентрически расположенных волокон, в спокойном состоянии растянут связкой, посредством которой он прикреплен, и имеет относительно уплощенную форму (установка на далекое ); при сокращении ресничной мышцы ослабляется натяжение связки, и хрусталик становится более выпуклым (установка на близкое ).

У рыб аккомодация достигается наличием особого серповидного отростка, отходящего от сосудистой оболочки и прикрепляющегося к стенке хрусталика. Нежная полупрозрачная сетчатка, или ретина (retina; рис., I ), выстилает изнутри сосудистую оболочку. Края ретины доходят спереди до ресничного тела и заканчиваются здесь особыми волнистыми складками (см. выше). Зрительный нерв проходит с тыльной стороны глаза через склеру, сосудистую оболочку и своими волокнами распространяется по внутренней стороне сетчатки (рис., 4).

Строение ретины весьма сложно (рис. 2). Чувствительные клетки распределены на наружной (обращенной от света) стороне и несут каждая на своей наружной части особые воспринимающие элементы-относительно вытянутые палочки или более короткие вздутия-к о л б о ч к и (рис. 2, 9). Эти своеобразные образования погружаются концами в лежащий кнаружи пигментный слой ретины (рис. 2,10). Чувствительные клетки с описанными: воспринимающими элементами (палочками и колбочками) называются наружным клеточным слоем. Кнутри от него расположено несколько слоев нервных клеток, соединяющихся дендритами; к самому внутреннему слою ганглиозных клеток подходят окончания зрительного нерва (рис. 2, 12). Все эти сложные образования поддерживаются опорными клетками (рис. 2, 11).


К описанию сетчатки следует добавить, что в месте вхождения в ретину зрительного нерва имеется лишь слой зрительных нервных волокон и отсутствуют элементы, воспринимающие свет. Участок сетчатки, соответствующий месту хождения зрительного нерва, не способен к восприятию световых раздражений и называется слепым пятном (papilla nervi optici). На линии главной оси глаза располагается желтое пятно (macula lutea; у птиц бывает до трех подобных пятен). На месте упомянутого пятна сетчатка состоит исключительно из слоя палочек и колбочек, т. е. наиболее восприимчива к свету.

Рис. 2. Схематический разрез через сетчатку глаза.

1-внутренняя пограничная перепонка; 2 -спой нервных волокон; 3 -слой ганглиозных клеток; 4 -внутренний сетчатый слой; 5 -слой биполярных клеток; 6 -наружный сетчатый слой; 7 -слой зрительных клеток; 8 -наружная пограничная перепонка; 9 -палочки и колбочки; 10 -пигментный эпителий; 11 -опорная ; 12 - центробежные и центростремительные волокна эрительного тракта; I, II, III -три последовательных пояса нейронов сетчатки.

Пространство между роговицей и зрачком называется передней камерой глаза и заполнено водянистой жидкостью. Небольшая узкая область между радужиной и хрусталиком составляет заднюю глазную камеру. Внутренняя полость глаза (между зрачком и ретиной) выполнена студенистым стекловидным телом (corpus vj treum), одетым тончайшей прозрачной бесструктурной оболочкой (membrana hyaloidea).

Роговица, водянистая жидкость, хрусталик и стекловидное тело составляют оптический аппарат глаза, служащий для проведения световых лучей к воспринимающему слою-сетчатке. При этом радужина служит диафрагмой, регулирующей количество света, поступающего в глаз. Одним из самых существенных отделов глаза является сетчатка, воспринимающая световые раздражения. У многих позвоночных глаз защищен складками кожи-в ерхним и нижним веком (palpebrae), выстланными изнутри многослойным эпителием, образующим конъюнктиву. В веках проходит кольцевая мускулатура, сокращение которой обусловливает сжимание и сближение век. По краям век часто можно видеть волосы в виде оторочек, образующих ресницы. У рыб имеется обычно только одно кольцевое веко. У некоторых млекопитающих, у птиц, у акул, амфибий и рептилий развита мигательная перепонка (membrana nicticans), лежащая глубже век и задергивающая глаза от внутреннего угла к наружному. У человека рудимент мигательной перепонки сохраняется в виде полулунной складки в нижнем внутреннем углу глаза. У многих ящериц и у рыб оба века прозрачны, сращены между собой и образуют постоянное прикрытие роговицы.

У наземных позвоночных в области век развиваются различные железы, смачивающие своими выделениями переднюю стенку глаза. Одна значительная группа желез локализована в области нижнего века у передне-внутреннего угла глаза,-здесь находится гардерова железа, выделяющая жирный секрет. Другая группа желез-так называемых слезных-находится у заднего угла глаза. У млекопитающих слезные железы расположены под верхним веком. Жидкое водянистое содержимое слезных желез стекает по конъюнктиве к передне-внутреннему углу глаза, откуда через слезный канал попадает в носовую полость. У водных млекопитающих, например, у китов, слезные железы хорошо развиты, но секрет их не жидкий, водянистый, а жирный и покрывает тонким слоем поверхность глазного яблока. Слезно-носовые каналы у китов не развиты.

Глаз позвоночных приводится в движение сокращениями шести мускулов. Из них четыре принадлежат к группе прямых мышц (m. recti). Внешний прямой мускул (см. выше) иннервируется n. abducens, три остальных-n. oculomotorius. Косых мышц две; из них верхняя снабжается окончаниями n. trochlearis, нижняя-n. oculomotorius. У многих млекопитающих, за исключением приматов, летучих мышей, слонов и др., развивается мускул, выпячивающий глаз (m. retractor bulbi). Этот мускул снабжается нервами: n. abducens, а в некоторых случаях и n. oculomotorius.

Орган зрения - глаз по своему устройству напоминает фотографический аппарат, причем хрусталик глаза подобен объективу, а сетчатка - пленке, на которой получается изображение. Хрусталик у рыб шарообразный и не может менять форму. Зрение их перестраивается на различные расстояния при приближении или удалении хрусталика от сетчатой оболочки.

физика

Оптические свойства водной среды не позволяют рыбе видеть далеко. Практически пределом видимости у рыб в прозрачной воде считают расстояние 10-12 м, а ясно рыбы видят не далее 1,5 м. Некоторые рыбы видят в темноте (судак, лещ, сом, угорь, налим). У них в сетчатке глаза есть особые светочувствительные элементы, способные воспринимать слабые световые лучи.
                    • Угол зрения рыб очень велик. Не поворачивая тела, большинство рыб способно видеть каждым глазом предметы в зоне около 150° по вертикали и до 170° по горизонтали.

  • Иначе видит рыба предметы, находящиеся над водой. В этом случае вступают в силу законы преломления световых лучей, и рыба может видеть без искажения лишь предметы, которые находятся прямо над головой- в зените. Наклонно падающие световые лучи преломляются и сжимаются в угол 97°,6
Чем острее угол входа светового луча в воду и ниже предмет, тем более искаженным видит его рыба. При падении светового луча под углом 5-10°, особенно если водная поверхность неспокойна, рыба перестает видеть предмет.

Лучи, идущие от глаза рыбы вне конуса, полностью отражаются от водной поверхности, поэтому она представляется рыбе зеркальной.

С другой стороны, преломление лучей позволяет рыбе видеть как бы скрытые предметы. Представим себе водоем с крутым обрывистым берегом. Вне преломления лучей водной поверхностью может увидеть человека.

Характерные особенности рыбьего зрения: близорукость; возможность видеть в нескольких направлениях одновременно. По последним данным, углы зрения рыб накладываются один на другой, и это позволяет им видеть перед собой бинокулярно, значит, они могут точно определять расстояние до увиденного предмета.

Рыбы различают цвета и даже оттенки

Цветовое зрение у рыб подтверждается их способностью изменять окраску в зависимости от цвета грунта (мимикрия).

Опыты кормления рыб из разноцветных чашечек подтвердили, что рыбы отчетливо воспринимают все спектральные цвета и могут различать близкие оттенки. Новейшие опыты, основанные на спектрофотометрических методах, показали, что многие виды рыб воспринимают отдельные оттенки не хуже человека.

К органам чувств рыбы относятся: зрение, слух, боковая линия, электрорецепция, обоняние, вкус и осязание. Разберем каждое по отдельности.

Орган зрения

Зрение – один из основных органов чувств у рыб. Глаз состоит из округлой формы хрусталика, имеющего твердую структуру. Находится вблизи роговицы и позволяет видеть на расстояние до 5м в состоянии покоя, максимальное зрение достигает 10-14м.

Хрусталик улавливает множество световых лучей, позволяя видеть в нескольких направлениях. Часто глаз имеет возвышенное положение, таким образом, в него попадают прямые лучи света, косые, а также сверху, снизу, с боков. Это значительно расширяет поле зрения рыб: в вертикальной плоскости до 150°, а в горизонтальной – до 170°.

Зрение монокулярное – правый и левый глаз получает отдельное изображение. Глаз состоит из трех оболочек: склера (ограждает от механических повреждений), сосудистой (поставляет питательные вещества), и ретинальной (обеспечивает световосприятие и цветоощущение за счет системы палочек и колбочек).

Орган слуха

Слуховой аппарат (внутреннее ухо или лабиринт) расположен в задней части черепной коробки, включает два отделения: верхний овальный и круглый нижний мешочки . В овальном мешочке расположены три полукружных канала – это орган равновесия, внутри лабиринта течет эндолимфа, с помощью выводного протока соединяется у хрящевых рыб с окружающей средой, у костных — заканчивается слепо.


Орган слуха у рыб совмещен с органом равновесия

Внутреннее ухо делится на три камеры, в каждой находится отолит (часть вестибулярного аппарата, который реагирует на механическое раздражение). Внутри уха заканчивается слуховой нерв, образуя волосковые клетки (рецепторы), при изменении положения тела раздражаются эндолимфой полукружных каналов и помогают сохранять равновесие.

Восприятие звуков осуществляется за счет нижней части лабиринта – круглого мешочка. Рыбы способны улавливать звуки в диапазоне 5Гц – 15кГц. К слуховому аппарату относятся боковая линия (позволяет услышать низкочастотные звуки) и плавательный пузырь (выступает как резонатор, соединён с внутренним ухом посредством Веберового аппарата , состоящего из 4 косточек).

Рыбы близорукие животные , передвигаются часто в мутной воде, с плохим освещением, некоторые особи обитают в морских глубинах, куда свет не достает вовсе. Какие же органы чувств и как позволяют ориентироваться в воде при таких условиях?

Боковая линия

Прежде всего – это боковая линия – основной орган чувств у рыб. Представляет собой канал, который идет под кожей вдоль всего тела, в области головы разветвляется, образуя сложную сеть. Имеет отверстия, через которые связывается с окружающей средой. Внутри расположены чувствительные почки (рецепторные клетки), которые воспринимают малейшие изменения вокруг.

Так они могут определять направление течения, ориентироваться на местности ночью, ощущать движение других рыб, как в стае, так и приближающихся к ним хищников. Боковая линия оснащена механорецепторами, они помогают водным жителям уворачиваться от подводных камней, инородных предметов, даже при плохой видимости.

Боковая линия может быть полной (располагается от головы до хвостовой части), неполной, а может быть вовсе заменена на другие развитые нервные окончания . При травмировании боковой линии рыба уже не сможет долго существовать, что свидетельствует о важности данного органа.


Боковая линия рыб — главный орган ориентации

Электрорецепция

Электрорецепция – орган чувств хрящевых рыб и некоторых костистых (электрический сом). Акулы и скаты ощущают электрические поля с помощью ампул Лоренцини – небольшие капсулы заполненные слизистым содержимым и выстланы специфическими чувствительными клетками, находятся в области головы и сообщаются с поверхностью кожи при помощи тонкой трубки.

Очень восприимчивы и способны ощущать слабые электрические поля (реакция возникает при напряжении в 0,001 мКв/м).

Так электрочувствительные рыбы могут выследить жертву, скрытую в песке, благодаря электрическим полям, которые создаются при сокращении мышечных волокон во время дыхания.

Боковая линия и электрочувствительность – это органы чувств характерны только для рыб!

Орган обоняния

Обоняние осуществляется при помощи ресничек, расположенных на поверхности специальных мешочков. Когда рыба чует запах, мешочки начинают двигаться: сужаться и расширятся, улавливая пахучие вещества. Нос включает 4 ноздри, высланные множеством чувствительных клеток.

Своим нюхом легко находят пищу, сородичей, партнера на период нереста. Некоторые особи способны подавать сигналы об опасности выделяя вещества, к которым чувствительны другие рыбы. Считают, что обоняние для водных жителей важнее зрения.


Органы вкуса

Вкусовые рецепторы рыб сосредоточены в ротовой полости (ротовые почки), и ротоглотке. У отдельных видов (сом, налим) встречаются в области губ и усов, у сазанов — по всему телу.

Рыбы способны распознавать, как и человек, все вкусовые характеристики: соленое, сладкое, кислое, горькое. С помощью чувствительных рецепторов рыба может отыскать необходимую пищу.

Осязание

Рецепторы осязания расположены у хрящевых рыб на участках тела не покрытых чешуей (брюшная область у скатов). У костистых чувствительные клетки разбросаны по всему телу, основная масса сосредоточена на плавниках, губах — дают возможность ощущать прикосновения.

Особенности органов чувств у костистых и хрящевых

Косные рыбы имеют плавательный пузырь, который воспринимает более широкий диапазон звуков, у хрящевых он отсутствует, также у них идет не полное разделение внутреннего уха на овальный и круглый мешочки.

Цветное зрение свойственно костистым, поскольку в их сетчатке находятся и палочки, и колбочки. Зрительный орган чувств хрящевых включает лишь палочки, которые не способны различать цвета.

У акул очень острый нюх, намного больше развита передняя часть мозга (обеспечивает обоняние), чем у других представителей.

Электрические органы – особые органы хрящевых рыб (скатов). Используются для защиты, нападения на жертву, при этом генерируются разряды мощностью до 600В. Могут выступать в качестве органа чувств – образуя электрическое поле, скаты улавливают изменения при попадании в него посторонних тел.

Зрение или способность к рецепции электромагнитного излучения определенного спектра играет важную роль в их жизни. Клетки сетчатки глаз рыбы по составу сходны с человеческими.

- конечно же, глаз, состоящий из шарообразного хрусталика, приближенного к плоской роговице и расположенный сбоку головы. Характерные особенности рыбьего зрения: близорукость; возможность видеть в нескольких направлениях одновременно.

Угол зрения рыб таков: около 150° по вертикали и до 170° по горизонтали.
Зрение рыбы монокулярно: каждый глаз видит самостоятельно. Для того чтобы разглядеть что-либо обеими глазами, рыба быстро поворачивается. Двумя глазами она видит очень узкую конусообразную площадь, находящуюся впереди.

Многие рыбы имеют выступающий из отверстия зрачка хрусталик, что увеличивает поле зрения. Спереди монокулярное зрение каждого глаза перекрывается, и образуется на 15–30° бинокулярное зрение. Основной недостаток монокулярного зрения - неточная оценка расстояния.
Глаз рыбы имеет три оболочки: 1) склера (наружная); 2) сосудистая (средняя); 3) сетчатка, или ретина (внутренняя).

Наружная оболочка склера защищает глаз от механических повреждений, образуя прозрачную плоскую роговицу.
Сосудистая оболочка обеспечивает кровоснабжение глаза. В передней части глаза сосудистая оболочка переходит в радужную, в которой в свою очередь располагается зрачок, с входящим в него хрусталиком.
В сетчатке находятся: 1) пигментный слой (пигментные клетки); 2) светочувствительный слой (светочувствительные клетки: палочки и колбочки); 3) два слоя нервных клеток; палочки и колбочки для восприятия света в темноте и цветоразличения.

По количеству этих палочек и колбочек (светочувствительных клеток) в сетчатке рыб делят на дневных и сумеречных.

Еще одна характерная особенность зрения рыбы: оно цветовое. Ученые установили, что некоторые виды рыб различают до 20 цветов. У хищников цветовое зрение развито лучше, чем у травоядных. Многие рыбы воспринимают диапазон световых волн даже шире чем человек. Рыба может частично видеть и ультрафиолетовое излучение. В целом же, спектр видимого излучения света у разных видов рыб различен.

В среднем, рыба хорошо видит в прозрачной, освещенной солнцем воде, однако некоторые виды приспособились видеть в сумерках и в мутной воде. Такие виды рыб имеют особое строение глаз. Однако и в прозрачной воде максимальная видимость у рыбы - 10-14 метров. Наиболее точная видимость - в пределах 2 метров.

Преломление световых волн в воде - достаточно сложная тема, и на разных глубинах преобладают разные волны спектра света, поэтому у рыбы развивается восприимчивость к различным видам спектральных волн света. Но в среднем, диапазон восприятия световых волн рыб составляет 400–750 нм.

В отличие от человека, зрение не играет главную роль среди органов чувств рыбы. Поврежденные или отсутствующие органы зрения рыбы (например, при ) неплохо компенсируются другими органами: боковой линией, органами обоняния, вкуса.

Рыбы, живущие в особых условиях, например, глубоководные виды, часто имеют отличное от большинства рыб строение органов зрения, либо не имеют их вообще. Оказавшись на воздухе, рыба не видит почти ничего.